

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

WIRELESS TOOL KIT FOR HAND HELD DEVICES

by

 Venkateshwaraiyer S Baalaji

September 2004

 Thesis Advisor: Gurminder Singh
 Thesis Co-Advisor: Alex Bordetsky

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
 Wireless Tool Kit For Hand Held Devices
6. AUTHOR(S) Venkateshwaraiyer S Baalaji

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Wireless networks can be broadly classified into two types – infrastructure based networks and ad hoc networks. The former
uses fixed base stations (infrastructure) which are responsible for coordinating communication between the mobile hosts
(nodes). These base stations are interconnected by wired back bones, where as mobile nodes communicate with the base station
through the wireless media. The latter one consists of mobile nodes which communicate with each other through wireless
medium without any fixed infrastructure. Hence there is no centralized infrastructure that takes care of the routing of
information among the participants in the network. There has been a growing interest in ad hoc network in recent years as
mobile devices have become more powerful and are capable of processing data like their desktop counterparts. When such a
capability is available these devices should be able to share information among them without reliance on existing network
infrastructure. Mobile devices are self configurable into either infrastructure or ad hoc mode. Protocols and software have been
developed to enable mobile devices to connect to an infrastructure node, where as the same is not the case in the ad hoc
environment. Host mobility causes frequent and unpredictable topological changes in a wireless environment. Finding and
maintaining routes in ad hoc networks is a non trivial task. This thesis will develop software components that will enable
communication in an ad hoc network. These components could be used to build collaborative services in such and ad hoc
(802.11) wireless environment.

15. NUMBER OF
PAGES

93

14. SUBJECT TERMS Media Access control, Ad hoc routing protocol, Ad hoc network performance
requirements.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

WIRELESS TOOL KIT FOR HAND HELD DEVICES

Venkateshwaraiyer S Baalaji
Major, Indian Air Force

B.E. Computer Science, Madurai Kamaraj University, 1991.

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2004

Author: Venkateshwaraiyer S Baalaji

Approved by: Dr Gurminder Singh

Thesis Advisor

Dr Alex Bordetsky
Co-Advisor

Dr Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Wireless networks can be broadly classified into two types – infrastructure based

and ad hoc. The former uses fixed base stations (infrastructure) which are responsible for

coordinating communication between the mobile hosts (nodes). These base stations are

usually interconnected by wired backbones, where as mobile nodes communicate with

the base station through the wireless media. Ad-hoc wireless networks consist of mobile

nodes which communicate with each other through wireless medium without any fixed

infrastructure. Hence there is no centralized infrastructure that takes care of the routing of

information among the participants in the network.

There has been a growing interest in ad hoc network in recent years as mobile

devices have become more powerful and capable of processing data like their desktop

counterparts. When such a capability is available these devices should be able to share

information among them without reliance on existing network infrastructure. Mobile

devices are self configurable into either infrastructure or ad hoc mode. Protocols and

software have been developed to enable mobile devices to connect to an infrastructure

node, whereas it is not the same in the ad hoc environment. Host mobility causes frequent

and unpredictable topological changes in a wireless environment. Finding and

maintaining routes in ad hoc networks is a non trivial task. This thesis will develop

software components that will enable communication in an ad hoc network. These

components could be used to develop collaborative services in such an ad hoc (802.11)

wireless environment.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE ..2
C. BENEFITS..2
D. THESIS ORGANIZATION..3

II. AD HOC NETWORK ...5
A. INTRODUCTION..5
B. PRNET (PACKET RADIO NETWORKS – ORIGIN OF AD HOC

NETWORKS)...6
C. AD HOC NETWORK CHALLENGES...9

1. Spectrum Allocation ..10
2. Media Access ..10
3. Routing..10
4. Energy Efficiency ...11
5. Security and Privacy..11
6. Congestion Control Mechanism ...11

III. MEDIA ACCESS CONTROL..13
A. INTRODUCTION..13
B. HIDDEN TERMINAL PROBLEM ...13
C. EXPOSED NODE PROBLEM...15
D. CSMA-CD...17
E. CSMA-CD-BI ...18
F. PAMAS ...18
G. DBTMA...19
H. MARCH..20
I. IEEE 802.11 STANDARD...21

IV. AD HOC ROUTING PROTOCOLS ...23
A OVERVIEW...23
B TABLE DRIVEN APPROACHES...24

1. Destination Sequenced Distance Vector (DSDV)24
2. Wireless Routing Protocol (WRP)..24
3. Cluster Switch Gateway Routing (CSGR).......................................25

C. SOURCE INITIATED ON DEMAND APPROACHES............................27
1. Ad Hoc On Demand Distance Vector Routing (AODV)27
2. Dynamic Source Routing (DSR) ...28
3. Temporally Ordered Routing Algorithm (TORA)29
4. Signal Stability Routing (SSR)..31
5. Location Aided Routing (LAR) ..32
6. Power Aware Routing (PAR)..33
7. Zone Routing Protocol (ZRP) ...34

 viii

V. AD HOC NETWORK PERFORMANCE REQUIREMENTS.............................37
A. INTRODUCTION..37
B. SIGNIFICANT PERFORMANCE PARAMETERS37

1. Route Discovery Time..37
2. End to End Delay (EED) Performance ..39
3. Communication Throughput ..39
4. Packet Loss Performance ..40
5. Route Reconfiguration...41

VI. TOOLKIT DEVELOPMENT METHODOLOGY ..43
A. INTRODUCTION..43
B. ARCHITECTURE...44

1. Node Discovery Process...45
2. Agent Module ...45
3. Toolkit Functionality ...46
4. Event Handling ..48
5. Multithreading ...49

VII. CONCLUSION ..51
A. CONCLUSION ..51
B. FOLLOW ON WORK ..52

APPENDIX. SOURCE CODE ..53

LIST OF REFERENCES..73

INITIAL DISTRIBUTION LIST ...75

 ix

LIST OF FIGURES

Figure 1. Network Architecture of PRNET. Static Station is Optional (From [2])5
Figure 2. Passive and Active Acknowledgements in PRNET (From [2]).........................9
Figure 3. Hidden Terminal Problem. (include reference to where this picture is

taken and do so for all such pictures) (From [2])...14
Figure 4. Hidden Node Problem Resolution by RTS-CTS Handshake (From [2]).15
Figure 5. Exposed Node Problem (From [2])..16
Figure 6. Solution of Exposed Node Problem by Unidirectional Antennae (From

[2])..16
Figure 7. Controlled Handshake used in CSMA-CA (From [2]).17
Figure 8. CSMA-CA BI Handshake (From [2])..18
Figure 9. PAMAS MAC interfaces and Power Aware Logic (From [2]).19
Figure 10. DBTMA Principle (From [2])..20
Figure 11. Handshake mechanism of MARCH (From [2])...21
Figure 12. Ad hoc Routing Protocols (From [2]) ..23
Figure 13. CSGR path constrained into cluster heads (From [2]).....................................26
Figure 14. AODV route discovery process (From [2]). ..28
Figure 15. DSR source route creation process (From [2]). ...29
Figure 16. (a) Route creation (b) Route maintenance (From [2])31
Figure 17. (a)Concept of request zone and expected zone in LAR (b) Consideration

of route physical distance (From [2])...33
Figure 18. PAR based on remaining battery life (From [2]). ..34
Figure 19. Hybrid approach – ZRP (From [2]). ..35
Figure 20. Route discovery time vs. beaconing interval (From [2]).38
Figure 21. Packet loss performance vs. packet size at: (a) High frequency beaconing

(b) Low frequency beaconing (From [2]). ...40
Figure 22. Routing from node 1 to node using CGSR (From [9])45

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Structure of a Neighbor Table in PRN (From [2])...6
Table 2. Structure of Tier Table in PRN (From [2]). ...7
Table 3. Structure of Routing Header (From [2]). ...8
Table 4. Average RD Time at one beaconing interval for different hop counts

(From [2])...38
Table 5. Average EED at minimum, 1000 bytes, maximum packet size for different

hops (From [2]). ...39

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AODV - Ad hoc On-Demand Distance Vector Routing

CSGR - Cluster Switch Gateway Routing

DBTMA - Dual Busy Tone Multiple Access

DSDV - Destination Sequenced Distance Vector

DSR - Dynamic Source Routing

EED - End to End Delay

LAR - Location Aided Routing

MAC - Media Access Protocol

MACA - Multiple Access with Collision Avoidance

MACA-BI - Multiple Access with Collision Avoidance (By Invitation)

MARCH - Media Access with Reduced Handshake

MANET - Mobile Ad hoc Network

PAMAS - Power Aware Multiple Access Protocol with Signaling

PAR - Power Aware Routing

PRNET - Packet Radio Networks

RD - Route Discovery

SSR - Signal Stability Routing

TORA - Temporally Ordered Routing Algorithm

WRP - Wireless Routing Protocol

ZRP - Zone Routing Protocol

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank Professor Gurminder Singh for his advice and guidance

through out the process of development of the toolkit which led to the successful

completion of the thesis. The genesis of the thesis was based on the requirement of

Professor Gurminder Singh who has specialized in the area of wireless technologies.

I would also like to thank Professor Alex Bordetsky for having provided valuable

guidance in completing the thesis.

I would like to thank my wife Anitha for her patience and understanding. This

effort would not have been possible without her support. I would like to thank her for her

effort in proof reading and correcting my language without which this effort would have

been infinitely harder.

Finally to my daughter Abirami, my hope is that this achievement will pale in

comparison to the success you will enjoy in your future endeavors.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
Beginning in the early 1990s, engineers began to develop a networking standard

that would allow users freedom of movement by employing the use of wireless

communications. Today, that standard is established and the implementation of Wireless

Local Area Networks (WLANs) is growing at an almost exponential rate.

Analysts from IDC Technologies project that global revenue for WLAN

equipment will increase to $3.72 billion in 2006 from $1.45 billion in 2001 [1]. Most of

the development has focused on the ability to provide users with the advantages of

increased mobility, convenience of use and improved productivity. The WLANs have

been built as an extension to the existing infrastructure that provides the additional

facility of mobility to the users. All this has become possible with the advent of small yet

powerful handheld/portable devices that have the capability to communicate with existing

infrastructure nodes in a mobile environment. However, the possibility of these devices

communicating among themselves without the use of the infrastructure nodes and

providing services has not been exploited to its full extent. Such a network wherein the

mobile devices communicate among themselves without reliance on the existing

infrastructure is called an ad hoc network.

A wireless mobile ad hoc network (MANET) consists of a collection of peer

mobile nodes that are capable of communicating with each other without help from a

fixed infrastructure. The interconnections between these nodes are capable of changing in

a continuous and arbitrary fashion. Nodes within each other’s radio range communicate

directly via wireless links while those that are far apart use other nodes as relays. Nodes

usually share the same physical media: they transmit and acquire signals in the same

frequency band, and follow the same hopping sequence or spreading code. The data link

layer function manages the wireless link resources and coordinates medium access

among neighboring nodes. The network layer function maintains the multi-hop

communication path across the network: all nodes must function as routers that discover

and maintain routes to other nodes in the network. Mobility and volatility are hidden

from the applications so that any node can communicate with any other node as if

2

everyone were in the fixed wired network. There are many applications of ad hoc

networks that range from military tactical operations to civil rapid deployment such as

emergency search and rescue missions, data collection/sensor network and instantaneous

classroom/meeting room applications. Currently, almost all PDAs available commercially

come equipped with several different wireless networking options including 802.11,

infrared and Bluetooth. The Operating Systems running on these devices provide support

for software development in the infrastructure and ad hoc modes. However, the

application development and support is available more in the infrastructure mode than in

ad hoc. This thesis will develop a toolkit that will hide the network layer functionality

required to build MANET application and help programmers to develop services in a

MANET. MANET is a complex environment and protocols are being developed to

address issues concerning the ad hoc nature of the network.

B. OBJECTIVE
The main objective of this thesis is to implement a software toolkit to facilitate the

development of applications on ad hoc 802.11 wireless networks. There are many routing

protocols that have been proposed for the set up of an ad hoc network. We will

investigate the proposals and adapt one that is implement-able using existing software

classes. The devices that operate in an Ad hoc network environment are expected to be

“aware” of other devices operating in the environment and also aware of existing

infrastructure around them (if any). This thesis shall develop an approach to making

devices “aware” of other devices and network elements.

C. BENEFITS
The existence of mobile nodes that are capable of communicating among them in

an ad hoc fashion increases the survival capacity of a network which is under hostile

action. The capability of the network to adapt and transform itself also makes the network

more difficult to attack. Clearly, the benefits that accrue from such a network are many

fold. The ad hoc network elements would be aware of the existence of other nodes in the

environment and also be able to route traffic destined to other nodes. Such an

3

environment would allow multiple paths of communication be formed as and when

required. However, these nodes would have to be managed efficiently. The requirement

in such a scenario would be the efficient use of bandwidth available and the effective

establishment of routes from one node to another to carry information.

D. THESIS ORGANIZATION
Chapter II will illustrate the origin of ad hoc networking and the techniques

adapted in setting up an ad hoc network using packet radios.

Chapter III will introduce the various wireless media access protocols that are

currently employed. The thesis will use the existing IEEE 802.11 standard in its

implementation and therefore discuss the employability of this standard in an ad hoc

network.

Chapter IV will introduce the various wireless Ad-hoc routing algorithms that are

evolving and being studied in detail. This chapter will take a look at the efficiencies and

constraints of a few of the protocols.

Chapter V will emphasize the communication and performance issues.

Performance issues relate to energy efficiency practices to be adapted in an ad hoc

network so as to compensate for deficiencies in the battery technology that have caught

up with speed of development of micro-processor technology.

Chapter VI will describe the software methodology followed to develop the

toolkit.

Chapter VII will enumerate the lesson learnt during the implementation of the

software and will list scope for future developments.

4

 THIS PAGE INTENTIONALLY LEFT BLANK

II. AD HOC NETWORK

A. INTRODUCTION
The origin of an infrastructure less network dates back to the early 70s where

computers and radio trans-receivers were bulky. DARPA had used several wireless

terminals that could communicate with one another. The communication was based on

the transmission of packets using packet radio technology and the concept of packet

switching. ALOHA, developed at the University of Hawaii, showed the feasibility of

broadcasting data packets in a single radio hop system. This single hop system was later

upgraded to a multi hop communication system over a wide geographical area and was

called the PRNET. The system consisted of mobile radio repeaters, wireless terminals

and dedicated mobile stations. Repeaters relayed packets from one to another until the

packet reached the destination. Mobile stations acted as routers deriving routes for the

packets based on terminal movement, repeater failures, network congestion state and

changes in hop reliability. Hosts and terminals joined the PRNET and were unaware of

their stations assignments and reassignment in the network.

Figure 1. Network Architecture of PRNET. Static Station is Optional (From

[2])

5

6

B. PRNET (PACKET RADIO NETWORKS – ORIGIN OF AD HOC
NETWORKS)

PRNET allowed routing in both point to point and broadcast modes. Route

calculations were based on tables. There were three tables that were monitored viz.,

neighbor table, tier table and device table. The neighbor table consisted of information

regarding the existence of another radio device in its vicinity. This information was

broadcast when a radio device was powered on in the form of a packet radio organization

packet (PROP). The PROP was broadcast every 7.5secs which indicated the existence of

other radio devices and also provided information about the network topology at that

time. The bidirectional quality of the link to and from the neighbors was also stored. The

link quality was measured as the number of packets correctly received from a

transmitting station during a PROP interval to the number of packets that the station

actually transmitted in the same interval.

Neighboring PR Link Quality

Node 1 5/8

Node 7 1/3

Node 3 3/4

Node 5 7/8

Table 1. Structure of a Neighbor Table in PRN (From [2]).

The tier table consisted of information regarding the best route to be used to

forward packets to every prospective destination. This information rippled outward from

each packet radio at an average of 3.75secs. The best route was considered the shortest

route with good connectivity. When a link turned bad, all routes using the link as the next

hop were marked bad and this was also propagated via PROPS.

7

Destination PR Next Hop PR Tier Count

Node 1 Node 15 2

Node 7 Node 7 0

Node 3 Node 4 1

Node 5 Node 2 1

Table 2. Structure of Tier Table in PRN (From [2]).

The device table was used to maintain device to packet radio mapping. Each

mobile device or terminal periodically sent control packets across the wired interface to

its attached packet radio and this information was broadcast at an average rate of 3.75secs

per hop.

The ETE (end to end) header used to transmit the radio packets included the

source device ID/address and the destination device ID/address. This information

remained intact as the packet moved from the source to its destination. In contrast to this

header (ETE), another header called the routing header was created by the source packet

radio. This header encapsulated the ETE header (which had to remain intact through out

the packets journey) with relevant next hop information and acknowledgement fields.

These fields were updated by the intermediate radio elements until the packet was

successfully delivered. When delivered the routing header was discarded.

8

Routing Header Field Purpose

Source PR ID Acknowledgement

Sequence Number Acknowledgement

Previous PR ID Acknowledgement

Previous PR’s transmit count Pacing

Transmitting PR ID Acknowledgement

Transmitting PR’s transmit count Pacing

Next PR ID Acknowledgement/Forwarding-Pacing

Tier Alternate Routing

Destination PR ID Forwarding

Table 3. Structure of Routing Header (From [2]).

The time for transmission of these packets was based on a pacing protocol that

provided flow and congestion control. The protocol required that transmitted packets be

acknowledged before subsequent packets are sent. In addition only two buffers were

provided per packet radio to accept packages received from the wired interface. Time

delays were recorded between when a transmission is completed and the reception of the

acknowledgement from the next packet radio. This was called the forwarding delay.

Therefore the source packet radio had to wait for a three frame period in order to confirm

that its packet had been sent, received at the intermediate node and then get

acknowledgement of the forwarding of the same packet by the intermediate node. This

ensured efficient use of the channel when there is no bottle neck and provided some

congestion control when bottle necks were experienced.

Packet radios employed CSMA (carrier sense multiple access) for media access.

The packet radio will not transmit when a carrier is sensed as this indicates transmission

by another packet radio. Packets are forwarded in a single communication route. Each

packet radio decides whether it is part of the route and transmits/forwards the packet only

if it is and discards the packet if it isn’t. If the packet radio is part of the route then it

forwards the packet and also provides a “passive” acknowledgement of the same to its

previous hop. This continues until the packet is received at the node which does not have

a downstream node or the destination which then does an “active” acknowledgement.

Figure 2. Passive and Active Acknowledgements in PRNET (From [2]).

C. AD HOC NETWORK CHALLENGES
Ad hoc wireless networks are formed by a collection of two or more devices that

have the capability of wireless communication and networking. The ad hoc network in

itself is self organizing and adaptive. Thereby these networks can be mobile, work in a

stand alone mode or be networked with more than two elements. In addition there may be

concurrent movement by the nodes. This will require rules to ensure consistency when

multiple route reconfiguration and repair is performed.

9

10

1. Spectrum Allocation
Ad hoc networks are based on the ISM band and are required to operate over

some form of allowed frequency range. The spectrum is not only tightly controlled and

allocated but may be required to be purchased in the future.

2. Media Access
Cellular networks have a centralized control and a global synchronization. There

are no such controls in an ad hoc network. Therefore the schemes that are used in a

cellular network (TDMA, FDMA) are not suitable in ad hoc networks. Other media

access control MAC protocols do not deal with host mobility. In ad hoc networks we

have to deal with multiple mobile ad hoc nodes or hosts that have access to the common

channel and must share the channel without a central coordination mechanism in a

distributed fashion. Therefore the MAC protocol that is designed for ad hoc network must

contend with problems such as collision with neighboring nodes, hidden terminal

problems and exposed node problems. These problems and the mechanism to overcome

them are discussed in the chapter 3 of the thesis.

3. Routing

The classical distributed Bellman-Ford routing algorithm is used to maintain and

update routing information in a packet radio network. Distance-vector based algorithms

could also be used in a packet radio network because the rate of mobility in this network

is not high. However, these protocols will not support a truly ad hoc network as the

presence of mobility implies that links make and break in a nondeterministic fashion.

Therefore the current distance-vector and link state based routing protocols do not have

the capability to address frequent link changes in ad hoc networks resulting in improper

route convergence and inefficient communication throughput. Therefore new routing

algorithms are needed. We will take a look at a few routing algorithms and list their

advantages and disadvantages in chapter 4 of the thesis.

11

4. Energy Efficiency
All network protocols do not consider power requirements as they are meant for

static hosts and routers which are powered by mains. However, in the ad hoc scenario all

the devices are mobile and are generally battery-powered. These mobile devices have a

superior micro processor technology and are able to process and compute enormous

information. However, the battery technology has not evolved sufficiently to provide

unlimited power for these devices. Therefore energy/power consumption is a major

design consideration in an ad hoc network. In particular, nodes in an ad hoc mobile

network require performing both the role of an end user system (user interacting system)

and an intermediary system (packet forwarding system). Forwarding packets on behalf of

others consumes power and thereby routing protocols have to consider energy efficiency

under such circumstances. These requirements and other communication requirements

are discussed in chapter 5 of the thesis.

5. Security and Privacy

Ad hoc networks are generally isolated from the internet unless they are

connected to the internet through a wired node. Therefore the attacks possible are limited

to attackers in the physically proximity/ radio range of the network. However, the

attacker does not require any physical connectivity to the network to perform any

malicious acts and this makes spoofing, passive monitoring, active jamming,

interception/relaying of packets, session hijacking etc easier than in a wired environment.

This requires a good neighbor node and user authentication mechanism, sound encryption

and a sound session management system.

6. Congestion Control Mechanism
TCP is a connection oriented protocol most widely used to provide for flow and

congestion in a wired network. This protocol relies on the round trip time of a packet to

conclude if congestion has occurred. In an ad hoc network such a mechanism will be

unable to distinguish network congestion as packets may be lost or dropped because of

the nature of the wireless medium. Therefore certain suitable modifications or

12

enhancements have to be made to the existing TCP protocol so as to enable TCP support

effective end to end communication throughput in a wireless environment.

13

III. MEDIA ACCESS CONTROL

A. INTRODUCTION
Wireless media can be accessed by any node in a shared environment. This could

lead to possible contention over this common channel. In an ad-hoc network the problems

are compounded as the nodes are mobile and there is no central controller. We will take a

look at the existing protocols that allow efficient use of a shared wireless media. The first

protocol is the MAC protocol which is concerned with a single link communication and

not an end to end communication. There are two types of MAC protocols synchronous

and asynchronous. Synchronous MAC protocol requires all nodes be synchronized in

time and this is achieved by synchronizing to a master beacon. Therefore this requires

central coordination. Asynchronous MAC protocol does not necessarily follow the same

time as are contention based.

B. HIDDEN TERMINAL PROBLEM
Well known protocols such as ALOHA, slotted ALOHA, CSMA, IEEE 802.11

have a common problem known as the hidden terminal problem. When two nodes are

hidden from each other (beyond radio range) they can start transmitting simultaneously

thereby resulting in a collision of data at the receiver node. To avoid collision a process

of hand shaking with the help of control signals such as RTS (request to send) and CTS

(clear to send) were used and a new protocol developed. This protocol required nodes not

to access the medium when an RTS was sent and a CTS was generated to acknowledge

the RTS. The RTS and CTS signals consisted of a field that showed the time duration for

which the channel is to be considered busy. This method also had its problems known as

the hidden terminal problem. The hidden terminal problem occurs when RTS and CTS

control messages are sent by different nodes. For example, node B is granting a CTS

signal to a node A which collides with the RTS signal being sent by node D to another

node C. Node D is the hidden terminal from node B and it does not receive the expected

CTS from node C. This causes a retransmission of the RTS by node D for node C. Node

A would have received the CTS from node B and is not aware of any collision that exists

at node C and hence proceeds with the transmission of data to node B. Under these

circumstances the data would collide with the CTS being sent by node C in response to

the RTS sent by node D.

Figure 3. Hidden Terminal Problem. (include reference to where this picture is

taken and do so for all such pictures) (From [2]).

Another problem could occur when multiple CTS messages are granted to

different neighboring nodes leading to collisions. For example, when node B returns a

CTS message in response to an RTS message sent by node A and node C sends an RTS

message at the same time to node B. Node C is unaware of the communication between

node A and B and also sends an RTS to node D. Node D proceeds to grant CTS message

to node C. Under this scenario both nodes A and C start transmitting data leading to a

collision.

14

Figure 4. Hidden Node Problem Resolution by RTS-CTS Handshake (From
[2]).

C. EXPOSED NODE PROBLEM

Data transmissions occurring from neighboring nodes will inhibit one node from

transmitting to other nodes as the node overhears the transmission. This is called an

exposed node problem. A node in range of the transmitter but out of range of the receiver

is called an exposed node. Under such conditions the exposed node tries communicating

without success and also inhibits other nodes from communicating successfully. The use

of a separate control and data channel or the use of directional antenna would eliminate

this problem.

15

Figure 5. Exposed Node Problem (From [2]).

Figure 6. Solution of Exposed Node Problem by Unidirectional Antennae (From

[2]).

16

D. CSMA-CD
The multiple access collision avoidance (CSMA-CA) technique is dependant on a

three way hand shake, RTS-DTS-DATA. The main feature of this protocol is that it

inhibits a transmitter when a CTS packet is overheard. Thereby collision does not occur

even during the RTS-CTS phase. The mobile hosts add a random amount of time to the

minimum interval required waiting after an RTS or CTS control message is sent. If two

or more stations transmit an RTS concurrently resulting in a collision, these stations will

wait for a randomly chosen interval before trying again. This interval is doubled if there

is a collision on every attempt thereafter. The station that succeeds will receive CTS from

its responder and thereby block other stations from transmitting to allow the data

communication session to begin.

Figure 7. Controlled Handshake used in CSMA-CA (From [2]).

17

E. CSMA-CD-BI
There is another multiple access collision avoidance mechanism (CSMA-CA-BI)

which uses only a two way handshake. In this case there is no RTS instead the message is

reconfigured as RTR (ready to receive). This mechanism is called multiple access

collision avoidance by invitation. The RTR is sent when the receiver node is ready to

accept data. In this scenario the receiver does not necessarily know that the sender has

data to transmit. The communication performance in this protocol is dependant on the

timely invitation sent by the receiver. This time period is estimated based on the packet

queue length and arrival rate at the source. This is accomplished by sending the packet

queue length and arrival rate information along with each data packet so as to enable the

receiver is aware of the transmitter’s backlog. This scheme is successful when the data

rate is constant and the performance drops when the traffic comes in bursts. In the worst

case scenario this mechanism will perform no better than the multiple access collision

avoidance case.

Figure 8. CSMA-CA BI Handshake (From [2]).

F. PAMAS

18

The power aware multiple access protocol with signaling (PAMAS) is used in ad

hoc networks and is based on the CSMA-CA with the additional signaling channel. This

protocol requires the conservation of battery power by selectively powering off non

active nodes or nodes not receiving any package. Conditions that force a node to power

off mode are:

i. Node has no packets to transmit and one of its neighbors is transmitting.

ii. A node has packets to transmit but at least one of its neighboring nodes is

transmitting or is receiving.

Suppose a node A wishes to transmit, it sends an RTS and enters a wait-for-CTS

state. If the CTS does not arrive the node takes an exponential back off state and retries

to send the RTS later. If the CTS arrives node A enters transmit data state. The receiver

node B sends a CTS and enters the await data state. If the data arrives the node will

transmit a busy tone over the signaling channel and enter receive data state.

Figure 9. PAMAS MAC interfaces and Power Aware Logic (From [2]).

G. DBTMA
DBTMA (dual busy tone multiple access) uses two out of band busy tones and a

single shared channel split into data and control channels. Data packets are sent over the

data channel and the control signals over the same shared channel. When a station wants

19

to transmit it first sends out an RTS message. The receiver node willing to accept the

data sends out a receive-busy tone followed by CTS message. Upon receiving this

CTS message, the source transmits a busy tone message prior to data transmission.

Neighboring nodes that hear transmit busy refrain from transmission and discard any

received packets.

Figure 10. DBTMA Principle (From [2]).

H. MARCH
MARCH (media access with reduced handshake) improves the transmission of

packets by reducing the amount of control overhead. It uses the characteristics of omni

directional antenna to reduce the required number of handshake signals. Adjacent nodes

B and C in a route will be able to monitor the CTS signal transmitted by the node B to its

source node A. Thereby node C can send CTS to node B without a RTS and the data can

be forwarded from the node B to C for onward transmission. This is illustrated in the

figure below. This protocol is a request first pull later protocol as the subsequent nodes in

the path just need to send invitation to pull data towards them.

20

Figure 11. Handshake mechanism of MARCH (From [2]).

I. IEEE 802.11 STANDARD

21

IEEE 802.11 standard supports a peer to peer (IBSS) independent basic service

set which is an ad hoc network with all its station within each others transmission range.

Hence this technology becomes the obvious choice when setting up an ad hoc network.

Let us take a look at the evolution of this standard. IEEE, European Telecommunication

Standards Institute and One Technology Alliance (Home RF) promote wireless local area

network standards (WLAN). Among the standards that were instituted by these

organizations the leading standard was the IEEE 802.11 standard. Among the IEEE

802.11 standards, 802.11b (Wi-Fi) was the leader. 802.11a and 802.11g were the

challengers to this standard. 802.11b is based on the (DSSS) direct sequence spread

spectrum version of 802.11 using a 2.4 GHz spectrum and orthogonal frequency division

multiplexing (OFDM). Its counterpart 802.11a uses the 5GHz spectrum. The 2.4GHz

spectrum is capable of penetrating physical barriers such as walls and ceilings and is

unlicensed in most of the countries. 802.11b supports a raw data transfer rate of 11Mbps

up to a distance of 30meters. The rate drops to 5.5Mbps beyond 30 meters and drops to

22

2Mbps around 65meters. The maximum range is 100meters and the data rate is 1Mbps.

The interesting point about the 802.11b specification is that it supports roaming between

access points. The specification requires a method for roaming but leaves the

implementation to the manufacturer. A feature known as the wired equivalent privacy

(WEP) was created with the 802.11 specification to provide security. The intention was

to provide a basic level of authentication and privacy by the use of data encryption. For

authentication an access point will request a client to verify its identity by sending a text.

The client will use RC4 encryption with a secret key to encrypt the text and return it back

to the access point. The access point will then decrypt the text using the same key and

verify whether the client is to be granted access or not. The WEP consists of a 24bit

initialization vector in addition to the WEP key. This vector is changed after a certain

interval. However, this initialization vector is sent in the clear and thereby the WEP

security is not very strong. Additional security mechanisms are being incorporated into

this standard by a task group and the new standard draft is currently being named as the

802.11i standard.

Synchronization is necessary for frequency hopping spread spectrum (FHSS) to

ensure that all stations “hop” at the same time: it is also necessary for both FHSS and

DSSS to perform power management. In an IBSS that is not very small there is a non

negligible probability that the stations may get out of synchronization. As the number of

stations increase, the probability of asynchronism also increases. To alleviate this

problem modifications have been suggested to the current synchronization algorithm of

the 802.11 standard. Therefore the IEEE 802.11 IBSS is a fully connected single hop ad

hoc network with all station within each others range. Investigations are currently being

done to see if the 802.11 standard can support multi hop ad hoc networks assuming each

station has the capability of routing.

IV. AD HOC ROUTING PROTOCOLS

A OVERVIEW
Since the advent of packet radio networks in the early 70’s by DARPA numerous

protocols have been developed for ad hoc mobile networks. Many of these protocols

require dealing with power consumption, low bandwidth and high error rates. These

protocols can be characterized as:

i) Table driven

ii) Source initiated on demand driven

The table driven approach attempts to maintain consistent, up to date information

for each node to every other node in the network using tables. They respond to changes in

the network by updating the required information and also propagating route updates to

maintain a consistent view. The source initiated on demand approach creates routes only

when desired by a source node. When the node requires a route to a destination a

discovery process is initiated and is completed once a route is found. The process

examines all possible permutations before suggesting a route. Once the route is

discovered it is maintained by a route maintenance procedure. If the route becomes

inaccessible or is no longer desired, it is dropped by the maintenance procedure.

Figure 12. Ad hoc Routing Protocols (From [2])

23

24

B TABLE DRIVEN APPROACHES
The table driven approaches are –

a) Destination Sequenced Distance Vector (DSDV)

b) Wireless Routing Protocol (WRP)

c) Cluster Switch Gateway Routing (CSGR)

1. Destination Sequenced Distance Vector (DSDV)
This protocol is based on the classical distributed Bellman-Ford algorithm.

However, loops are avoided in this algorithm by the use of routers. Every node maintains

the route information in a table of all the possible destinations within a non-partition

network and the number of hops to each destination if required. Therefore the route is

always available regardless of whether it is required or not. Routes are distinguished by

providing a sequence number. Updates are done periodically through out the network to

maintain consistency and this rendering causes a lot of control traffic which reduces the

utilization of network resources. To alleviate this problem route updates are performed

using one of the two route update packets. The first known as full dump is performed

infrequently when there is less traffic and this packet consists of all available routing

information. This information is sent in multiple network protocol data units. The second

known as incremental packets are used to relay only changes since the last full dump.

Broadcasts containing new route information will consist of the address of the

destination, the number of hops to reach the destination, a sequence number of the

information received regarding the destination as well as a new sequence number unique

to the broadcast. The route labeled with the most recent sequence number (in increasing

order) is always used and the route with the smaller hop count is used in case the

sequence number is the same for more than one route.

2. Wireless Routing Protocol (WRP)
Wireless routing protocol belongs to a family of path finding algorithms which

avoid loops. In this algorithm the nodes communicate information regarding the distance

and the second-to-last hop in the network. This algorithm avoids the count to infinity

25

problem caused by loops by forcing every node in the network to perform consistency

checks of predecessor information reported by all its neighbors. This process avoids

looping situations and also provides an efficient route convergence when a link failure

happens. The existence of nodes is informed by the neighbors acknowledging the receipt

of transmitted requests and other messages. When a node is not sending any packets it

must send a hello message within a specific period of time that informs that the node is

properly connected. If there is a lack of message from a particular node then it indicates a

link failure. When a hello message is received that new node information is added to the

routing table and a copy of this table is sent to its neighbors.

WRP maintains four tables viz., a) Distance table b) Routing table c) Link cost

table and d) Message retransmission list. The number of hops between a node and its

destination is stored in the distance table. The next hop information is stored in the

routing table. The delay information associated is stored in the link cost table. Sequence

number of the update message, a retransmission counter, an acknowledgement required

flag vector and a list of update messages sent are stored in the message retransmission

list. Retransmitted messages must be acknowledged by the neighbors and such

information is stored as updates in the update message of the MRL.

3. Cluster Switch Gateway Routing (CSGR)

In this form of routing nodes are grouped into clusters with every cluster having a

head. Such a grouping introduces a form of hierarchy. The cluster head controls the group

and this framework provides for code separation, channel access, routing and bandwidth

allocation. The cluster head is chosen using a distributed cluster head selection algorithm.

When a cluster head leaves the group a new head is selected. This could lead to problems

if the cluster head changes frequently as the group will then spend time choosing a new

cluster head instead of forwarding data towards their intended destinations. To avoid this

phenomenon a least cluster change (LCC) algorithm is introduced. This algorithm effects

a change only when two cluster heads come into contact or when a node moves out of all

other cluster heads. CSGR basically employs the DSDV routing scheme with a slight

modification. The modification involves the use of cluster-head-to-gateway routing

approach to send packages from the source to its destination. Nodes that are within

communication range of two or more cluster heads are called gateway nodes. A packet

sent by a node is first routed to its cluster head and then through a gateway it is routed to

the cluster head of the destination node. Once the destination node cluster head is reached

the packet is then transmitted to the destination. Therefore each node must keep a cluster

member table. This table information is broadcast by every node using the DSDV

protocol periodically. In addition a routing table is also maintained to keep track of the

next hop information. When a packet arrives, the next hop information and the cluster

member information of the nearest cluster head along the route is processed and the

message is transmitted. Update information regarding both routing and cluster member

tables is needed in the CSGR approach.

Figure 13. CSGR path constrained into cluster heads (From [2]).

26

27

C. SOURCE INITIATED ON DEMAND APPROACHES
The source initiated on demand approaches are –

a) Ad hoc On Demand Distance Vector Routing (AODV)

b) Dynamic Source Routing (DSR)

c) Temporally Ordered Routing Algorithm (TORA)

1. Ad Hoc On Demand Distance Vector Routing (AODV)
The AODV protocol is an improvement of the DSDV approach as it minimizes

the number of required broadcast by generating the routes on an on demand basis as

apposed to maintaining the complete list of routes. Routes that are not the selected path

do not maintain any routing information and do not participate in any exchange of any

routing table information. Messages sent to a destination by a source generate a path

discovery process when a valid route to the destination does not exist. When a source

node has to send a message it broadcasts a route request packet (RREQ) to all its

neighbors which is then forwarded by the neighbors to their neighbors and so on until the

destination is reached or an intermediate node with a recently updated route to the

destination is located. AODV maintains destination sequence numbers and recent route

information to all nodes which ensures the routes are loop free. Every node has a

broadcast ID and a sequence number. The broadcast ID together with the nodes IP

address uniquely identifies an RREQ which is incremented every time a path discovery

process is initiated. A message containing the sequence number, broadcast id and the

most recent RREQ is sent when the source node requires communicating with the

destination. Intermediary nodes reply to the RREQ only if there is a route to the

destination whose corresponding destination sequence number is greater than or equal to

that contained in the RREQ. Intermediary nodes record in their route tables the address of

the neighbors from which the first copy of broadcast packet was received when they

forward the RREQ and thereby establish a reverse path. If multiple copies of the same

RREQ are received they are discarded. When the destination is reached, the destination

or an intermediary node responds by sending a route reply (RREP) along the reverse

path. As the RREP is routed back along the reverse path intermediary nodes in this path

set up route entries in their table that point to the node from which the RREP was

received. These route entries indicate the active forward path. Every route entry is

associated with a timer and is deleted if the entry is not used within the specified life

time. When a source node moves it has to reinitiate the discovery process to find a new

route to the destination. If an intermediary node along the route moves then its upstream

neighbor propagates a link failure notification message (RREP with infinite cost) to each

of its active upstream neighbors and requires them to erase that part of the route

information. This notification is further propagated by the upstream neighbors to their

active upstream neighbors and so on. Hello messages are periodic local broadcasts made

by a node to inform its presence to its neighbors may be additionally used to indicate the

existence of a link. However,, the use of these messages is not required as the nodes

listen for retransmissions of data packets and if such a retransmission is not heard the

node assumes a link failure. It may then request acknowledgement for network

connectivity using the hello messages or any other message.

Figure 14. AODV route discovery process (From [2]).

2. Dynamic Source Routing (DSR)
Dynamic source routing is based on the concept of source routing. In this routing

nodes are required to maintain route caches that contain routes which the nodes are aware

of. Entries are continually updated into the route cache as new routes are discovered. The

protocol consists of two major processes a) route discovery and b) route maintenance.

When a packet is available at a source node for dispatch for some destination, the source

node first consults its route cache to determine if there exists an unexpired route to that

28

destination. If such a route exists the packet is sent using that route and if it doesn’t a

route discovery process is initiated by broadcasting a route request packet. The route

request message consists of the address of the destination along with the address of the

source node and a unique ID. Each node receiving this route request message checks its

cache to see if a route to the destination exists before forwarding the message along its

outgoing links. To limit the outward propagation of route requests a mobile node

forwards the route request only if the request has not been seen so far or the mobile’s

address has not appeared in the route record. A route reply is generated when the route

request reaches the destination or an intermediary node which has an unexpired route to

the destination on its cache. The route reply specifies the route from the source to the

destination. Route maintenance is done by the use of a route error packet and

acknowledgements. Route errors are generated when there is a fatal transmission

problem. Route error messages are also used to verify the proper functioning of the route

links. Acknowledgements to route error messages could also be passive

acknowledgements.

Figure 15. DSR source route creation process (From [2]).

3. Temporally Ordered Routing Algorithm (TORA)
TORA is based on the concept of link reversal which is a highly adaptive loop

free distributed routing algorithm. The most essential requirement of a TORA is the
29

30

localization of control messages to a very small set of nodes when a topological change

occurs to the network. This protocol is source initiated, suited for a highly dynamic

mobile networking environment and provides multiple routes for any source destination

pair. It performs three basic functions: a) route creation b) route maintenance and c) route

erasure. The route creation and maintenance process establishes a DAG (directed acyclic

graph) between the source and the destination using a “height” metric. Nodes are there

after assigned upstream or downstream based on their relative “height” metric compared

to their neighboring nodes. If a node moves the DAG is broken and route maintenance

becomes necessary to reestablish a DAG routed at the same destination. TORA is

dependant on a clock timer and assumes all nodes are synchronized to the clock. The

calculation of the height metric is based on the timing. This metric comprises of five

elements namely a) logical time of link failure b) unique ID of the node that defined the

new reference level c) reflection indicator bit d) propagation ordering parameter and e)

unique ID of the node. The first three elements collectively represent the reference level.

Every time a node looses its last link due to link failure a new reference level is defined.

This scheme has a potential for oscillations to occur. However, such oscillations are

temporary and route convergence does occur finally as TORA uses inter nodal

coordination.

Figure 16. (a) Route creation (b) Route maintenance (From [2])

4. Signal Stability Routing (SSR)
SSR performs route selection based on the signal strength between nodes and on a

node’s location stability. SSR can be divided into a) dynamic routing protocol (DRP) and

b) static routing protocol (SRP). A signal stability table (SST) and a routing table (RT) is

maintained by the DRP. The SST contains records of signal strength of neighboring

nodes which are obtained periodically from beacons sent out by the neighbors at the link

layer. The signal strength is categorized as either strong or weak channel. The routes

from source to destination are stored in the routing table. When a packet is received for

transmission it is processed in the SRP. The SRP looks for the destination of the packet in

31

32

the RT and then forwards them if a route is found. If no route is found then a route search

process is initiated and route requests propagated through the network. However, the

route requests are forwarded to the next hop only if they are received over strong channel

and have not been processed previously. The destination returns the route search packet

that it received first as it is most probably the packet that has traveled the shortest path or

the least congested path. The DRP then reverses the selected route and sends a route reply

message to the source. The source then forwards the message to the destination along the

route specified in the route reply message. Route search packets that are received at the

destination are assumed to have traveled the path of the strongest signal links as the

nodes would have been dropped if they had arrived over a weak channel. However, if no

route message is received at the source within a specific time out period the source may

change the preference field of the header in the route search packets to indicate the

acceptance of weak channels also. Link failure is detected within the network when

intermediary nodes send error messages to the source indicating the failure of a channel.

Under these circumstances another route search process may have to be initiated. There

after the source sends a message to erase the route to all concerned nodes.

5. Location Aided Routing (LAR)
LAR uses location information (via a GPS) to improve performance. LAR uses a)

expected zone and b) request zone to limit the search for a new route. LAR assumes the

sender has the knowledge of the destination and velocity before hand. The expected zone

is calculated based on this information. The smallest triangle that includes the expected

zone and the sender is called the request zone. Nodes that do not fall within the request

zone discard packets that they receive. Nodes that fall within the request zone respond

with routes to the destination if they have any. LAR depends on GPS receivers being able

to be connected to the sender and other nodes. However, not all devices can be equipped

with GPS receivers and in such cases the scheme will not be implement able. This

scheme has to overcome problems caused due to positional errors.

Figure 17. (a)Concept of request zone and expected zone in LAR (b)

Consideration of route physical distance (From [2]).

6. Power Aware Routing (PAR)
PAR advocates:

1. Minimizing energy consumed per packet

2. Minimizing variance in node power

3. Minimizing cost per packet

4. Minimizing the maximum node cost

5. Maximizing the time before network is partitioned

This protocol prefers routes of nodes that have longer battery life.

33

Figure 18. PAR based on remaining battery life (From [2]).

7. Zone Routing Protocol (ZRP)
ZRP is a hybrid protocol that incorporates the principles of on demand and

proactive routing protocols. It consists of routing zones similar to a cluster and every

node in the cluster acting as both a cluster head and a member of the cluster. Zones

comprise of a few mobile ad hoc nodes with one or two hops and can overlap. A table

driven routing protocol is used within the zone. It has three sub protocols a) proactive

(table driven) intra zone routing protocol (IARP) b) reactive inter zone routing protocol

(IERP) and c) border cast resolution protocol (BRP). IARP’s role is to ensure that all

nodes within the zone have a consisting routing table and can be implemented using the

existing link state or distance vector routing protocols. IERP runs on the border nodes

and requires them to perform on demand routing to search for routing information to

nodes outside the current zone. Broadcasts are not allowed to penetrate into nodes within

other zones. When routes are broken if the source for the breakage is within the zone it is

treated like a change event and an event driven route update informs the other nodes

within the zone of the link failure. If the mobility is a result of a border node or a node

outside the zone then a route search is to be performed again.

34

Figure 19. Hybrid approach – ZRP (From [2]).

35

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

V. AD HOC NETWORK PERFORMANCE REQUIREMENTS

A. INTRODUCTION
Communication networks are required to transport user traffic from source to

destination. The performance of such network affects the satisfaction level of users. A

higher level of satisfaction is achieved when the network is able to transmit the message

within a short duration of time and at a low cost. The dynamics of the ad hoc network and

its underlying protocols must be able to support the transfer of information without delay.

In this chapter we will look at the various performance parameters of interest.

B. SIGNIFICANT PERFORMANCE PARAMETERS
The significant parameters that emphasize the communication requirements of an

ad hoc wireless network are –

a) Route Discovery Time

b) End to End Delay Performance (EED)

c) Communication Throughput

d) Packet Loss performance

e) Route reconfiguration

1. Route Discovery Time
Ad hoc protocols that are source initiated on demand based initiate a route

discovery process whenever a packet is to be sent from the source to the destination. The

time required for the process to discover such a route is known as the route discovery

time. This process involves the sending of a route request packet by the source node

which is broadcast to all its neighbors in search of valid routes to the destination. A reply

control packet is then received by the source which was sent by the destination via the

reverse path. The route discovery time has a direct relation with the beaconing interval in

an ad hoc network. Periodic beaconing is implemented in most protocols of the ad hoc

network to gather longevity information. These beacons are control messages that are

broadcast by a node to its immediate neighbors. The beaconing interval is important as it

has strong implication on a) the amount of bandwidth and power consumed b) the

accuracy of longevity information and c) time to detect and repair link failure. The route

discovery time increases with the increase in the frequency of beaconing. The route delay

increases with the increase in route length because of the increase in total propagation

delay.

Figure 20. Route discovery time vs. beaconing interval (From [2]).

Route Length Average RD Time

One Hop 6.64 ms

Two Hops 20.94 ms

Three Hops 32.98 ms

Table 4. Average RD Time at one beaconing interval for different hop counts (From
[2])

38

39

2. End to End Delay (EED) Performance
The EED accounts for all the delays from the source to the destination. The

various delays are transmission delay, propagation delay, processing delay and queuing

delay. The EED various with the packet size of the message. This is because the larger

the packet size the longer the elements of transmission propagation and processing times.

The EED also increases with the increase in hop counts. The beaconing interval does not

have any significant bearing on the interval of EED.

Average EED

Hop Count Min Size 1000 bytes Max Size

One Hop 3.25 ms 10.40 ms 340.00 ms

Two Hops 6.20 ms 19.70 ms 26.20 ms

Three Hops 8.80 ms 29.20 ms 38.30 ms

Table 5. Average EED at minimum, 1000 bytes, maximum packet size for different
hops (From [2]).

3. Communication Throughput
Communication throughput is measured by sending a ping message from the

source to the destination and measuring the ratio between the total data received and the

total delay incurred. The impact of packet size on throughput shows that there is a

dramatic increase in throughput with an increase in packet size beyond 64bytes.

However, the throughput decreases when the packet size reaches 128bytes and stagnates

until it reaches a saturation point. The beaconing interval does not have an impact on the

throughput except at extremely high beaconing frequency. The increase in route length

causes degradation in the throughput.

4. Packet Loss Performance
Packet loss is an important measure in an ad hoc network as the network is

subject to external interference and multi path fading which affect the end to end

communication. To measure such packet loss 100 ping messages were sent and the

amount of packet lost in transmission recorded. At higher beacon frequencies packet

losses tended to be higher and also as the packet size increased there were significantly

higher packet losses. Increasing the beaconing interval did not have any significant effect

on packet loss. The route length also did not have any significant influence on packet

loss. It was However, observed that collusions in a channel could significantly contribute

to packet loss. Therefore in an ad hoc route lengthened by multiple hops the overall path

loss is dependant on intermediary links along the route.

Figure 21. Packet loss performance vs. packet size at: (a) High frequency

beaconing (b) Low frequency beaconing (From [2]).

40

41

5. Route Reconfiguration
Route reconstruction time is the time required for a host to reestablish a route

when an intermediary route has moved. This route reconfiguration time does not vary

with the increase in the number of hops. The beaconing interval and the packet size also

did not have any effect on the route reconfiguration time.

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

VI. TOOLKIT DEVELOPMENT METHODOLOGY

A. INTRODUCTION
With the recent exponential growth in the wireless technology and the popularity

of handheld devices there are abundant devices available in the market. The mobile

devices that were chosen for implementation in this thesis were those that were readily

available in the school. There are two major options available to develop the ad hoc

toolkit. Option I was to use a Palm Device which ran on Palm OS and Option II was to

use a Pocket PC device which ran on a Windows CE OS. In both the options the devices

available were WI-FI enabled. The ad hoc network was to be built using the wireless

802.11 standard as this was the most widely accepted successfully implemented

technology that supported the requirements of an ad hoc network. As was discussed in

Chapter II the media access protocol requirements of an ad hoc network were satisfied to

a great extent by the 802.11 protocol. The routing and other security requirements could

be built on top of this protocol. The standard supported mobility within the radio range of

the devices. The software requirements included the choice of an OS and then the choice

of a development environment. The Microsoft Windows CE OS offered the choice of

developing the toolkit using any one of the following environment:

i) Embedded Visual C++ 4.0

ii) Embedded Visual Basic

iii) .Net Compact Framework Environment

The .Net Compact Framework provided and integrated environment for

developing, debugging, testing and deploying the embedded device software applications

where as the other two environments catered for the development and debugging

requirements but required extensive deployment procedures to be followed to run the

applications developed. The .Net Compact framework also provided the flexibility of

programming in either Visual Basic or C#.

The choice of Palm OS would have entailed the choice of a JAVA development

environment. The resources available in this environment are extensive. The major

compatibility issues are programs written for one OS are not supported by the other OS

44

and hence applications run only in one family of devices that run on the same OS. The

other issue is some amount of backward incompatibility is also seen among the devices

that run same OS.

For the implementation planned as part of this thesis I chose the .Net Environment

for development and the Pocket PC environment for deployment. The implementation

was tested using multiple Pocket PCs devices.

B. ARCHITECTURE
The topology of an ad hoc network keeps varying, and the performance of any

control algorithm used in the network for purpose of scheduling transmission, routing and

broadcasting require adapting to these changes efficiently. Topology management is

achieved using either power control or hierarchical organization.

Power Control mechanisms base their control on power available on a per node

basis so that one-hop neighbor connectivity is balanced and overall network connectivity

is ensured. The hierarchical approach requires a subset of the network nodes to serve as

the network backbone and support the control functions. This topology is called

Clustering and consists of choosing cluster heads such that each node is associated with a

cluster head. Once elected, the cluster heads are connected with one another directly or

through gateways so that the union of cluster heads and gateways constitute a connected

backbone. Cluster heads and Gateways reduce the complexity of maintaining topology

information and simplify functions of routing, bandwidth allocation, channel access,

power control or virtual – circuit support. For the clustering to be efficient and effective

the Cluster heads and Gateways must be within radio range and as close as possible. The

other important functionality is that the nodes in the network have to be aware of the

other nodes that join the network or leave the network. Only then the nodes can elect

cluster heads and gateways from among themselves.

This thesis has implemented a single hop network that consists of many nodes and

a single cluster head which also acts as the gateway and can be used to connect to other

gateways in the future as shown in figure 22.

Figure 22. Routing from node 1 to node using CGSR (From [9])

1. Node Discovery Process
The node discovery process is implemented by the cluster head (Listener Agent)

which listens for broadcasts in the network for a specific Communication ID. The

network is assumed to consist of mobile nodes communicating through a common

broadcast channel using omni-directional antennae with the same transmission range (in

our case Pocket PCs WI-FI enabled.) The Listener Agent listens for Clients to register.

Once registered the Clients are able to communicate to the Listener and also to other

Clients registered with the Listener. The Listener is responsible to monitor the

registration process of clients and also the de-registration process of clients. The Listener

also ensures that messages received from a client are broadcast to every client registered

with it. As the implementation consists of a single hop no routing is performed in this

implementation.

2. Agent Module
The agent is required to perform the role of Listener or that of a Client as required

and has to be built to support both the functionality. The functionality of the Listener

requires the creation of two threads one to support the functionality of receiving

45

46

messages from the various clients and the other to transmit the messages received to other

registered clients. The process of registration requires the creation of a unique

communication ID which distinguishes messages sent within this network. The formation

of this network would also entail the creation of some control messages to acknowledge

receipts of message, process of registration, process of de-registration and transfer of

control of the Listener to another node when the Listener wants to leave the network and

transfers the control to another node. All this is achieved by creating a client that is

capable of sending and receiving messages. The listener inherits all the functionality from

the client and also implements additional functionality of distributing messages in the

network. This is achieved by creating an additional thread running in the background

which monitors a message queue to see if there is any message available for distribution.

The node addresses to which the distribution is to be effected is stored in an array list of

clients formed when clients register with the listener. The implementation uses the Multi

Comm Framework (.dll file) developed by Jim Wilson, [6] as the implementation was

found more responsive and effective when developed using the UDP datagram. The

connectionless UDP datagram was more efficient in a wireless environment than the

connection oriented TCP socket as it was difficult to maintain the connection in a mobile

WI-FI environment and the connections had to be reestablished more than once to ensure

transmission. The connectionless approach required that an additional retransmission

mechanism be created whenever an acknowledgement was not received for all types of

transmission. This was a small overhead and surmountable than overcoming problems to

maintain connection in a connection oriented protocol.

3. Toolkit Functionality
The toolkit offers the following functionality:

a) Capability to “Start” a Collaborative chat Service – This option

instantiates the Agent in a Listener Mode. This is the default mode and all

agents are put into this mode when the software starts. In this mode the

agent will:

i. Listen for “Invite request” sent by various clients that want to join

the chat environment or conversation. When this message is

47

received the “Invite” Message is sent to allow the client join the

conversation.

ii. Send “Invite” messages to clients wishing to join the chat

environment or conversation. When this message is sent the client

acknowledges with an “Invite Accept” message that causes the

registration of the client with Listener.

iii. Send “Terminate Conversation” message when the Listening agent

wants to leave the conversation. Under this circumstance another

client in the conversation can take up the function of a Listener or

the chat service can be stopped. There can only be a single Listener

(client operating in the Listening Mode) in every conversation.

iv. Forward messages received from one client to other clients

registered with it.

b) Capability to “Join” a Collaborative chat Service - This option instantiates

an agent in the Client Mode. This is not the default mode and the user has

to choose this mode by a selection in the menu. In this mode the agent

performs the following:

i. Send “Invite Request” Messages to join a conversation.

ii. Acknowledge “Invite” Messages to enable registration with a

Listener.

iii. Send user generated conversation messages to the Listener.

iv. Send “Leave Conversation” message to indicate intention to leave

the chat environment. This causes the listener to de- register the

client from the conversation and will result in no further

forwarding of messages from other clients.

c) Capability to “Modify” parameters for the chat environment - This option

allows the user modify:

i. User Name – the name displayed with the message received.

48

ii. Client Port – The port on which the client sends and receives

messages.

iii. Listener Port – The port on which the Listener sends and receives

messages. (Note the agent when instantiated is either a client or a

listener and ports have to be set as per the role the agent for

successful communication.)

iv. Clear – Erase display area.

d) Capability to cut and paste parts of a conversation into a clipboard and

store or view the clipboard.

e) Send a text file to all the clients in the conversation.

f) Capability to switch roles from that of a client to a listener and vice versa.

However, it is to be noted that such switch over should take place only

after all data transmissions are over so as to not cause any loss of data.

Further any reversal of roles carried out should ensure the presence of only

one listener in every conversation to ensure proper functioning.

4. Event Handling
All messages are processed by threads that run in the background. For efficiency,

various events are generated to notify the application of different activities that have

occurred. The following events are generated by the toolkit and require to be handled:

a) On Receive Event

b) On Join Event

c) On Leave Event

d) On Terminate Event

a.) “On Receive” Event – This event is to be handled by the listener.

This event forms the heart of the program and is the mechanism used to notify the

application that a message has been received. In this event, the listener receives a byte

49

array of data that has been sent by one of the clients. The received bytes are stored in an

array called the “message pump” with the address of the sender. The messages stored in

this message pump are then forwarded to all other clients, other than the sender,

registered in the array called “client list”. There are three threads spawned by the listener

when it is instantiated. One thread is used to send messages. The second thread is used to

receive messages and the third thread is used to forward messages stored in the message

pump. The client spawns only two threads one for sending messages and the other to

receive messages.

b.) “On Join” Event - This event is handled by both the client and

listener. For the client, this event conveys the conversation name and the IP address of

the listener. For the listener, this event conveys the conversation name and the IP address

of the client that has just joined in.

c.) “On Leave” Event – This event is handled by both the client and

the listener. This event is fired by a specific client when it has left the conversation. For

the listener this event conveys the conversation name and the IP address of the client who

has just left the conversation. This event causes the removal of the IP address of the client

from the “client list” and there by messages is not forwarded to this IP address in the

future. For the client this event closes the agent and does a graceful exit from the

application.

d.) “On Terminate” Event – This event is handled by both the client

and the listener. This event indicates that the listener is terminating the conversation.

Once this happens, no further messages from any client will be distributed. However,, if

any one of the clients switch their roles and take up the role of a listener, a new

conversation can be established.

5. Multithreading
The .NET compact framework is designed to be used in a client environment and

therefore does not provide support for processor intensive, high performance applications

and services which the full .NET framework supports. Therefore there are several

threading features that the .NET compact framework does not support. Threads do not

50

have priorities in the .NET compact framework. If an application requires notification

that a thread has terminated then code must be placed in the application that sets some

synchronization mechanism such a Mutex before the thread exits and in the waiting

thread, place code that performs a call to the wait-for-one method of the Mutex object.

Suspend and resume methods which allow one thread to suspend and the other to resume

respectively is not supported in the .NET compact framework. This has to be carried out

by signaling a thread through a Mutex auto reset event or manual reset event. A

background thread does not terminate when the owning application dies. Therefore the

creation and manipulation of the background thread is not supported in the .NET compact

framework. The creation and switching of control between threads running in the

foreground and background is the primary requirement for the development of the chat

application. The above-mentioned restrictions are overcome by the use of the .DLL file

multi communication framework designed by [6]. Therefore the inclusion of the DLL file

in our application provided us methods which could be used to create multiple threads

running in the foreground and background simultaneously. This enables the application to

become more responsive, scaleable and efficient.

51

VII. CONCLUSION

A. CONCLUSION
The potential for developing applications in a mobile ad hoc network is immense

and the experience these applications will provide when deployed would entail them

being termed as smart applications. These applications would be aware of their

environment. Ad hoc mobile applications combine the characteristics of neighbor-aware,

location-aware, connectivity-aware and context-aware smart applications in varying

degrees and forms. For example a Context/Location aware application running on a

wearable computer could detect the presence of a user in a shopping mall and inform the

user of the bargains being offered, new product information and their availability to help

him make informed decisions. Additionally online-catalogs, price comparisons, delivery

information and other technical specifications can be received and shown to the user

making his shopping experience virtually different. The scope and potential of such ad

hoc applications is generally left to the readers imagination as of today as the protocols

and technology that support ad hoc computing evolves. But it is only a matter of time

when we will have such applications running of devices that are portable (as

miniaturization improves), aware of other devices (as device discovery and routing

protocols improves) and are context sensitive (using smart applications). Pervasive

computing transcending physical boundaries and providing useful interactive

environments can be formed using ad hoc network technologies. Motorola Piano Project

and UC Berkeley Sensor Networks (Smart Dust Project) are next generation applications

that are being studied in Laboratories.

Ad hoc wireless networking is evolving in both design of ad hoc routing protocols

and prototype implementation. There are a large number of protocols which have been

suggested and a few prototypes have also been implemented using the existing protocols

like HTTP, TELNET, FTP and TCP/IP. These studies and experiments have provided

varying degrees of results on throughput, EED and RD time and have thereby

necessitated change in existing protocols to satisfy ad hoc environment needs. The

changes may be minor in certain protocols (such as TCP/IP) and certain new protocols

have to be created (such as SSDP, SLP V2). Implementing ad hoc wireless networks

52

using the current mobile computer technology, wireless adapters and Ad hoc routing

software is feasible and the resulting communication performance is acceptable for most

data application. However, Ad hoc routing protocols have to be fine tuned and mobile

operating system modified to provide functionality to implement these ad hoc routing

protocols. Currently ad hoc routing software is written from scratch as the existing

mobile operating systems do not have the ad hoc routing functionality in built on them.

The development of this toolkit will provide users the ability to test different quality of

service requirements of an ad hoc network and also help him understand the functionality

that would be required to be implemented in operating systems. The toolkit will also

provide a mechanism which can be used to provide a collaborative service using the

existing UDP protocol and multicast environment to provide for a chat service.

B. FOLLOW ON WORK
The first stage of the development of an ad hoc network would be creation of the

network itself and testing applications that a based of a single hop. This would involve

the creation of smart applications (User agents). This User Agent must then be aware of

other devices in the neighborhood and form a Directory of User Agents. These User

Agents must then be able collaborate and provide some Service. This thesis implemented

the creation of an agent, development of a directory and establishment of a Chat and File

transfer facility (Service) among the agents. This service was however limited to a single

hop or a single group of User agents. Multiple groups of such agents must be able to

communicate among themselves and that could be the next stage of this implementation.

This would require the employment of any one of the routing mechanisms (protocols)

discussed earlier and would require (Listener Agent) in this thesis provide an additional

facility of communicating with other listeners in the vicinity using the routing mechanism

devised.

53

APPENDIX. SOURCE CODE

using System;
using System.IO;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Data;
using System.Text;
using MultiCommFramework;
using System.Net.Sockets;
using System.Net;

namespace MultiCommFramework
{
 /// <summary>
 /// Summary description for Agent.
 /// </summary>
 public class Agent : System.Windows.Forms.Form
 {
 private string _user = "Chat User";
 private string _conversation = "Multiple User";
 private bool _isHost = true;
 private string current = null;
 private int _clientPort = 5995;
 private int _listenerPort = 5998;

 private const string _originalTitle = "Client";
 private const string _hostTitle = "Host";
 private

 MultiCommClient _multiComm = null;
 Encoding _textEncoding = Encoding.UTF8;

#region Windows Form generated code

 private System.Windows.Forms.TextBox txtInput;
 private System.Windows.Forms.TextBox txtDisplay;
 private System.Windows.Forms.MenuItem menuClient;
 private System.Windows.Forms.MenuItem menuLeave;
 private System.Windows.Forms.MenuItem menuModify;
 private System.Windows.Forms.MenuItem menuExit;
 private System.Windows.Forms.MenuItem menuSetting;
 private System.Windows.Forms.MenuItem menuJoin;
 private System.Windows.Forms.MenuItem menuUtility;
 private System.Windows.Forms.MenuItem menuSend;
 private System.Windows.Forms.MenuItem menuUserName;
 private System.Windows.Forms.MenuItem menuClientPort;
 private System.Windows.Forms.MenuItem menuListener;
 private System.Windows.Forms.MenuItem menuCurrentDir;
 private System.Windows.Forms.MenuItem menuTransmitFile;
 private System.Windows.Forms.MenuItem menuCopyText;
 private System.Windows.Forms.TextBox CopyBox;
 private System.Windows.Forms.MenuItem menuViewClipBoard;

54

 private System.Windows.Forms.MenuItem menuSaveClipBoard;
 private System.Windows.Forms.MenuItem menuCloseClipBoard;
 private System.Windows.Forms.MenuItem menuclearDisplay;
 private Microsoft.WindowsCE.Forms.InputPanel inputPanel2;
 private System.Windows.Forms.MainMenu mainMenu1;

 public Agent()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //

// TODO: Add any constructor code after
InitializeComponent call

 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.mainMenu1 = new System.Windows.Forms.MainMenu();
 this.menuSetting = new System.Windows.Forms.MenuItem();
 this.menuModify = new System.Windows.Forms.MenuItem();
 this.menuUserName = new System.Windows.Forms.MenuItem();
 this.menuClientPort = new System.Windows.Forms.MenuItem();
 this.menuListener = new System.Windows.Forms.MenuItem();

this.menuclearDisplay = new
System.Windows.Forms.MenuItem();

 this.menuJoin = new System.Windows.Forms.MenuItem();
 this.menuLeave = new System.Windows.Forms.MenuItem();
 this.menuClient = new System.Windows.Forms.MenuItem();
 this.menuExit = new System.Windows.Forms.MenuItem();
 this.menuUtility = new System.Windows.Forms.MenuItem();
 this.menuCurrentDir = new System.Windows.Forms.MenuItem();

this.menuTransmitFile = new
System.Windows.Forms.MenuItem();

 this.menuCopyText = new System.Windows.Forms.MenuItem();
this.menuViewClipBoard = new
System.Windows.Forms.MenuItem();
this.menuSaveClipBoard = new
System.Windows.Forms.MenuItem();

55

this.menuCloseClipBoard = new
System.Windows.Forms.MenuItem();

 this.menuSend = new System.Windows.Forms.MenuItem();
 this.txtInput = new System.Windows.Forms.TextBox();
 this.txtDisplay = new System.Windows.Forms.TextBox();
 this.CopyBox = new System.Windows.Forms.TextBox();

this.inputPanel2 = new
Microsoft.WindowsCE.Forms.InputPanel();

//

 // mainMenu1
 //
 this.mainMenu1.MenuItems.Add(this.menuSetting);
 this.mainMenu1.MenuItems.Add(this.menuUtility);
 this.mainMenu1.MenuItems.Add(this.menuSend);

 //
 // menuSetting
 //
 this.menuSetting.MenuItems.Add(this.menuModify);
 this.menuSetting.MenuItems.Add(this.menuJoin);
 this.menuSetting.MenuItems.Add(this.menuLeave);
 this.menuSetting.MenuItems.Add(this.menuClient);
 this.menuSetting.MenuItems.Add(this.menuExit);
 this.menuSetting.Text = "Setting";

this.menuSetting.Click += new
System.EventHandler(this.menuSetting_Click);

 //
 // menuModify
 //
 this.menuModify.MenuItems.Add(this.menuUserName);
 this.menuModify.MenuItems.Add(this.menuClientPort);
 this.menuModify.MenuItems.Add(this.menuListener);
 this.menuModify.MenuItems.Add(this.menuclearDisplay);
 this.menuModify.Text = "Modify";

this.menuModify.Click += new
System.EventHandler(this.menuModify_Click);

 //
 // menuUserName
 //
 this.menuUserName.Text = "UserName";

this.menuUserName.Click += new
System.EventHandler(this.menuUserName_Click);

 //
 // menuClientPort
 //
 this.menuClientPort.Text = "ClientPort";

this.menuClientPort.Click += new
System.EventHandler(this.menuClientPort_Click);

 //
 // menuListener
 //

56

 this.menuListener.Text = "ListenerPort";
this.menuListener.Click += new
System.EventHandler(this.menuListener_Click);

 //
 // menuclearDisplay
 //
 this.menuclearDisplay.Text = "ClearDisplay";

this.menuclearDisplay.Click += new
System.EventHandler(this.menuclearDisplay_Click);

 //
 // menuJoin
 //
 this.menuJoin.Text = "Join";

this.menuJoin.Click += new
System.EventHandler(this.menuJoin_Click);

 //
 // menuLeave
 //
 this.menuLeave.Text = "Leave";

this.menuLeave.Click += new
System.EventHandler(this.menuLeave_Click);

 //
 // menuClient
 //
 this.menuClient.Text = "Client";

this.menuClient.Click += new
System.EventHandler(this.menuClient_Click);

 //
 // menuExit
 //
 this.menuExit.Text = "Exit";

this.menuExit.Click += new
System.EventHandler(this.menuExit_Click);

 //
 // menuUtility
 //
 this.menuUtility.MenuItems.Add(this.menuCurrentDir);

 this.menuUtility.MenuItems.Add(this.menuTransmitFile);

 this.menuUtility.MenuItems.Add(this.menuCopyText);

 this.menuUtility.MenuItems.Add(this.menuViewClipBoard);

 this.menuUtility.MenuItems.Add(this.menuSaveClipBoard);

 this.menuUtility.MenuItems.Add(this.menuCloseClipBoard);

this.menuUtility.Text = "Utilities";

57

 //
 // menuCurrentDir
 //
 this.menuCurrentDir.Text = "CurrentDirList";

this.menuCurrentDir.Click += new
System.EventHandler(this.menuCurrentDir_Click_1);

//

 // menuTransmitFile
 //
 this.menuTransmitFile.Text = "TransmitTextFile";

this.menuTransmitFile.Click += new
System.EventHandler(this.menuTransmitFile_Click);

 //
 // menuCopyText
 //
 this.menuCopyText.Text = "CopyText";

this.menuCopyText.Click += new
System.EventHandler(this.menuCopyText_Click);

 //
 // menuViewClipBoard
 //
 this.menuViewClipBoard.Text = "ViewClipBoard";

this.menuViewClipBoard.Click += new
System.EventHandler(this.menuViewClipBoard_Click_1);

 //
 // menuSaveClipBoard
 //
 this.menuSaveClipBoard.Text = "SaveClipBoard";

this.menuSaveClipBoard.Click += new
System.EventHandler(this.menuSaveClipBoard_Click);

 //
 // menuCloseClipBoard
 //
 this.menuCloseClipBoard.Text = "CloseClipBoard";

this.menuCloseClipBoard.Click += new
System.EventHandler(this.menuCloseClipBoard_Click);

 //
 // menuSend
 //
 this.menuSend.Text = "Send";

this.menuSend.Click += new
System.EventHandler(this.menuSend_Click);

 //
 // txtInput
 //

this.txtInput.Location = new System.Drawing.Point(8,
8);
this.txtInput.Size = new System.Drawing.Size(224,
22);

58

 this.txtInput.Text = "";

//
 // txtDisplay
 //

this.txtDisplay.Location = new
System.Drawing.Point(7, 44);

 this.txtDisplay.Multiline = true;
 this.txtDisplay.ReadOnly = true;

this.txtDisplay.ScrollBars =
System.Windows.Forms.ScrollBars.Both;
this.txtDisplay.Size = new System.Drawing.Size(224,
208);

 this.txtDisplay.Text = "";

 //
 // CopyBox
 //

this.CopyBox.Location = new System.Drawing.Point(17,
56);

 this.CopyBox.Multiline = true;
this.CopyBox.ScrollBars =
System.Windows.Forms.ScrollBars.Both;
this.CopyBox.Size = new System.Drawing.Size(191,
184);

 this.CopyBox.Text = "";
 this.CopyBox.Visible = false;

 //
 // Agent
 //
 this.ClientSize = new System.Drawing.Size(240, 264);
 this.Controls.Add(this.txtInput);
 this.Controls.Add(this.CopyBox);
 this.Controls.Add(this.txtDisplay);
 this.Menu = this.mainMenu1;
 this.Text = "Collab Agent";

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 static void Main()
 {
 Application.Run(new Agent());
 }

#endregion

59

#region MultiComm Management

 /// <summary>
 /// Create an instance of the MultiComm object.
 /// The exact object (Client or Listener) is determined
 /// by the Host choice in the option dialog.
 /// If host is checked, the Listener is created
 /// otherwise client
 /// The only difference from the program standpoint
 /// between client and listener is in the initialization,
 /// the rest of the program is unaffected
 /// </summary>
 private void CreateMultiComm()
 {
 if (_isHost)
 _multiComm = CreateMultiCommListener();
 else
 _multiComm = CreateMultiCommClient();

_multiComm.OnReceive += new
ReceiveEventHandler(_multiComm_OnReceive);
_multiComm.OnTerminate += new
TerminateEventHandler(_multiComm_OnTerminate);

 }

 /// <summary>
 /// Create client object
 /// </summary>
 /// <returns></returns>
 private MultiCommClient CreateMultiCommClient()
 {

MultiCommClient client = new
MultiCommClient(_conversation, _clientPort);

client.OnJoined += new
JoinedEventHandler(client_OnJoined);

 client.Start();
 client.SendInviteRequest(_listenerPort);
 current = _originalTitle;

 return client;
 }

 /// <summary>
 /// Create instance of a listener and attach to the
 /// relevent events

/// Returns client because all ongoing behaivior is tracked
as client

 /// </summary>
 /// <returns></returns>
 private MultiCommClient CreateMultiCommListener()
 {

60

MultiCommListener listener = new
MultiCommListener(_conversation, _clientPort,
_listenerPort);

listener.OnJoined += new
JoinedEventHandler(listener_OnJoined);
listener.OnLeave += new
LeaveEventHandler(listener_OnLeave);

 listener.Start();
 listener.SendInvitation();
 current = _hostTitle;

 return listener;
 }

 /// <summary>
 /// Shutdown the current MultiComm object
 /// </summary>
 private void StopMultiComm()
 {
 if (_multiComm != null)
 {
 if (! _isHost && _multiComm.IsInConversation)
 {
 SendMessage(_user + " has left");
 System.Threading.Thread.Sleep(100);

// give message time to send
 }
 _multiComm.Stop();
 _multiComm = null;
 }
 UpdateDisplay("You have left the conversation");
 }

 #endregion

#region MultiComm Event Handlers

 /// <summary>

/// Fired by Listener (Host) when a client joins the
conversation

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void listener_OnJoined(object sender,
JoinedEventArgs e)

 {
DoUpdateDisplayInvoke(string.Format("Connected: {0}",
e.ipMember));

 }

61

 /// <summary>

/// Fired by Listener (Host) when a client leaves the
conversation

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void listener_OnLeave(object sender, LeaveEventArgs
e)

 {
DoUpdateDisplayInvoke(string.Format("Disconnected:

{0}", e.ipMember));
 }

 /// <summary>
 /// Fired by client when the Listener (Host) acknowledges a
 /// request to join the conversation
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void client_OnJoined(object sender, JoinedEventArgs
e)

 {
DoUpdateDisplayInvoke("You have joined: " +

_conversation);
 SendMessage(_user + " has joined");
 }

 /// <summary>
 /// Fired each time a conversation message is received
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void _multiComm_OnReceive(object sender,
ReceiveEventArgs e)

 {
DoUpdateDisplayInvoke(_textEncoding.GetString(e.dataBuffer,
0, e.dataBuffer.Length));

 }

 /// <summary>

/// Fired when the Listener (Host) terminates the
conversation

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void _multiComm_OnTerminate(object sender,
TerminateEventArgs e)

 {
DoUpdateDisplayInvoke("Host has terminated conversation");

 }

#endregion

62

#region Message Sending

 /// <summary>

/// Do Actual send of a message to conversation
participents

 /// </summary>
 /// <param name="message"></param>
 private void SendMessage(string message)
 {
 if (_multiComm != null)

 _multiComm.Send(_textEncoding.GetBytes(message));
 else

MessageBox.Show("Must first join a conversation
(Conversation/Join)");

 }

 /// <summary>
 /// Initiate message send
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void mnuSend_Click(object sender, System.EventArgs
e)

 {
 string message = _user + ": " + txtInput.Text;
 UpdateDisplay(message);
 SendMessage(message);
 txtInput.Text = string.Empty;
 }

 #endregion

#region Display Management

 /// <summary>
 /// Add a message to txtChatDisplay
 /// Handle details of scrolling text into view

/// This also triggers an evaluation of available menu
selections. This
/// is a somewhat inefficient place to do it but simplifies
the code by
/// providing single point for modification for menu
selections.

 /// </summary>
 /// <param name="displayText"></param>
 private void UpdateDisplay(string displayText)
 {

string linePrefix = txtDisplay.Text.Length == 0 ?
">>" : "\r\n>>";

 txtDisplay.Text += linePrefix + displayText;
 PositionChatDisplay();

 }

63

// Helpers to transfer control to UI thread for display
updates

 EventHandler _updateDisplayInvoker = null;
 string _displayText = null;

 /// <summary>

/// Do the work to place the display text in a member
variable

 /// then transfer control to the UI thread
 /// </summary>
 /// <param name="displayText"></param>
 private void DoUpdateDisplayInvoke(string displayText)
 {
 if (_updateDisplayInvoker == null)

_updateDisplayInvoker = new
EventHandler(UpdateDisplayInvoke);

 _displayText = displayText;
 txtDisplay.Invoke(_updateDisplayInvoker);
 }

 /// <summary>

/// Do the actual transfer to the UI thread then display
the message

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void UpdateDisplayInvoke(object sender, EventArgs
e)

 {
 UpdateDisplay(_displayText);
 }

 /// <summary>

/// Place a help message in the txtChatInput and highlight
to be overwritten.
/// Useful to display help message w/o requireing extra
screen real estate

 /// </summary>
 /// <param name="displayText"></param>

public void DisplayHelpMessage(long t2,DateTime t3,string
t4)

 {
string linePref = txtDisplay.Text.Length == 0 ? ">>"
: "\r\n>>";

 txtDisplay.Text += linePref+t2 + " " +t3 +" "+ t4;
 //txtDisplay.SelectAll();
 PositionChatDisplay();
 }

 /// <summary>
 /// Do the details of scrolling a display message into view
 /// </summary>
 private void PositionChatDisplay()
 {
 txtDisplay.Select(txtDisplay.Text.Length, 0);

64

 txtDisplay.ScrollToCaret();
 }

 /// <summary>

/// Do the details of realigning the screen when the input
panel (SIP)

 /// is shown/hiddent
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void inputPanel1_EnabledChanged(object sender,
System.EventArgs e)

 {
 int screenBottom = inputPanel2.VisibleDesktop.Height;
 if (! inputPanel2.Enabled)
 screenBottom -= statBarAdjustment;

 txtInput.Top = screenBottom - txtInput.Height + 1;
 txtDisplay.Height = txtInput.Top + 1;

 PositionChatDisplay();
 }

 /// <summary>

/// Adjustment for difference in VisibleDesktop property of
InputPanel

 /// when InputPanel is not visible
 /// </summary>
 const int statBarAdjustment = 26;

 #endregion

#region Menu Handling

 /// <summary>
 /// Switch between client/listener.

/// For a client, switches to listener, changes menuname
client
/// For a listener, switches to client, changes menuname
listener

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuClient_Click(object sender,
System.EventArgs e)

 {
 if (current == null)
 {
 if(menuClient.Text == "Client")
 {
 _isHost = false;
 menuClient.Text = "Host";
 }
 else
 {
 _isHost = true;
 menuClient.Text = "Client";

65

 }
 }
 else
 {

string displayMessage1 = "You have to leave the
conversation to change";

 UpdateDisplay(displayMessage1);
 }

 }

 /// <summary>
 /// Leave the current conversation.
 /// For a client, notifies listener then shutsdown

/// For a listener, notifies all clients then terminates
the conversation

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuLeave_Click(object sender,
System.EventArgs e)

 {
 Cursor originalCursor = Cursor.Current;
 Cursor.Current = Cursors.WaitCursor ;

 if (_multiComm.IsInConversation)
 SendMessage(_user + " has left");

string displayMessage = _multiComm.Mode ==
MultiCommMode.Listener ? "Terminating conversation" :

 "Leaving conversation";

 StopMultiComm();
 current = null;
 UpdateDisplay(displayMessage);
 Cursor.Current = originalCursor;
 }

 /// <summary>
 /// Join the current conversation.

/// For a client this will start the MultiCommClient and
then request

 /// an invitation for the conversation
/// For a listener, will start a MultiCommListener (stored
as a client)
/// and then broadcast an invitation to join the
conversation

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuJoin_Click(object sender, System.EventArgs
e)

 {
 Cursor originalCursor = Cursor.Current;
 Cursor.Current = Cursors.WaitCursor ;

 CreateMultiComm();

66

// DisplayHelpMessage("<Type message here then tap
send>");

string displayMessage = _multiComm.Mode ==
MultiCommMode.Listener ? "Attempting to locate
available clients..." :

 "Attempting to locate host...";
 UpdateDisplay(displayMessage);
 Cursor.Current = originalCursor;
 }

 /// <summary>
 /// Terminate the MultiComm if running then exit
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuExit_Click(object sender, System.EventArgs
e)

 {
 StopMultiComm();
 this.Close();
 }

 /// <summary>
 /// To change username that is displayed with messages
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuUserName_Click(object sender,
System.EventArgs e)

 {
 _user = txtInput.Text;
 txtInput.Text = string.Empty;
 }

 /// <summary>
 /// To change client port number
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuClientPort_Click(object sender,
System.EventArgs e)

 {
 _clientPort = GetPortValue(txtInput.Text);
 txtInput.Text = string.Empty;
 }

 /// <summary>
 /// To change Listener Port Number
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuListener_Click(object sender,
System.EventArgs e)

 {
 _listenerPort = GetPortValue(txtInput.Text);

67

 txtInput.Text = string.Empty;
 }

 /// <summary>

/// Helper method to extract the Port value from the
Options form

 /// </summary>
 /// <param name="portAsString"></param>
 /// <returns></returns>
 private int GetPortValue(string portAsString)
 {
 int port = 0;
 if (portAsString.Trim() != string.Empty)
 port = int.Parse(portAsString);

 return port;
 }

 /// <summary>
 /// Initiate message send
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuSend_Click(object sender, System.EventArgs
e)

 {
 string message = _user + ": " + txtInput.Text;
 UpdateDisplay(message);
 SendMessage(message);
 txtInput.Text = string.Empty;
 }

 /// <summary>
 /// Display current directory listing
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuCurrentDir_Click_1(object sender,
System.EventArgs e)

 {
 DirList(this);
 txtInput.Text = string.Empty;
 PositionChatDisplay();
 }

 /// <summary>
 /// To Transmit text files
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuTransmitFile_Click(object sender,
System.EventArgs e)

 {
 OpenFileDialog dlg = new OpenFileDialog();

68

dlg.Filter = "All Files (*.*)|*.*|Text Files
(*.txt)|*.txt";

 dlg.InitialDirectory = @"\";

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 this.txtInput.Text = dlg.FileName;
 MessageBox.Show(dlg.FileName);
 PositionChatDisplay();
 FileRead(this);
 }

 txtInput.Text = string.Empty;

 }

 /// <summary>
 /// Copy selected text in the display to clipboard
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuCopyText_Click(object sender,
System.EventArgs e)

 {
 // Ensure that text is selected in the text box.
 if(txtDisplay.SelectedText != "")
 CopyBox.Text += txtDisplay.SelectedText;

 }

 /// <summary>
 /// To view contents of clipboard
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuViewClipBoard_Click_1(object sender,
System.EventArgs e)

 {
 CopyBox.BringToFront();
 CopyBox.Visible = true;
 }

/// <summary>
 /// To save contents of clipboard
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuSaveClipBoard_Click(object sender,
System.EventArgs e)

 {

 SaveFileDialog dlg = new SaveFileDialog();
 dlg.Filter = "Text File|*.txt";
 dlg.FileName = "user.txt";
 dlg.InitialDirectory = "\\My Documents";

69

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 MessageBox.Show(dlg.FileName);

StreamWriter sw = new
StreamWriter(dlg.FileName, false);

 sw.Write(this.CopyBox.Text);
 sw.Close();
 }

 txtInput.Text = string.Empty;
 }

 /// <summary>
 /// To close clipboard
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuCloseClipBoard_Click(object sender,
System.EventArgs e)

 {
 CopyBox.SendToBack();
 CopyBox.Visible = false;
 }

 /// <summary>
 ///
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuModify_Click(object sender,
System.EventArgs e)

 {

 }

 /// <summary>
 /// To clear display area
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuclearDisplay_Click(object sender,
System.EventArgs e)

 {
 txtDisplay.Text = string.Empty;

 }

/// <summary>
 ///
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>

private void menuSetting_Click(object sender,
System.EventArgs e)

 {

70

 }

 #endregion

#region Utilities

 /// <summary>
 /// Function to display contents of current directory
 /// </summary>
 /// <param name="sender"></param>

 public static void DirList(Agent sender)
 {
 DirectoryInfo dir;
 if(sender.txtInput.Text != string.Empty)
 dir = new DirectoryInfo(sender.txtInput.Text);
 else
 dir = new DirectoryInfo(".");

 try
 {
 foreach (FileInfo f in dir.GetFiles("*.*"))
 {
 String name = f.FullName;
 long size = f.Length;

DateTime creationTime = f.CreationTime;
sender.DisplayHelpMessage(size,creationTi
me, name);

 }
 }
 catch (Exception e)
 {

sender.UpdateDisplay("The directory has no
files/could not be read:"+e);

 }
 }

 /// <summary>
 /// Function to read and transfer text file
 /// </summary>
 /// <param name="sender"></param>
 public static void FileRead(Agent sender)
 {
 string fileName = sender.txtInput.Text;
 try
 {

// Create an instance of StreamReader to read
from a file.
// The using statement also closes the
StreamReader.
using (StreamReader sr = new
StreamReader(fileName))

 {
 String line;

// Read and display lines from the file
until the end of

71

 // the file is reached.
 while ((line = sr.ReadLine()) != null)
 {
 sender.SendMessage(line);
 sender.UpdateDisplay(line);
 }
 }
 }
 catch (Exception e)
 {
 // Let the user know what went wrong.

sender.UpdateDisplay("The file could not be
read:");

 sender.UpdateDisplay(e.Message);
 }
 }

 /// <summary>
 /// Function to save contents from clipboard to a file
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 public static void FileWrite(Agent sender)
 {
 string path = @sender.txtInput.Text;
 // Delete the file if it exists.
 if (File.Exists(path))
 {
 File.Delete(path);
 }

 // Create the file.
 using (FileStream fs = File.Create(path, 1048576))
 {

Byte[] info = new
UTF8Encoding(true).GetBytes(sender.CopyBox.Text
);

 // Add some information to the file.
 fs.Write(info, 0, info.Length);
 }
 }

#endregion

 }

}

72

 THIS PAGE INTENTIONALLY LEFT BLANK

73

LIST OF REFERENCES

[1] Jay Wrolstad. Mobile Infrastructure Market Poised for Growth. URL:

 http://www.wirelessnewsfactor.com/perl/story/17975.html, September 2004

[2] C.K Toh . Ad Hoc Mobile Wireless Networks. Protocols and Systems.

[3] Andy Wigley/Stephen Wheelwright. .Net Compact Framework Core Reference.

[4] IETF Internet Draft for DSR. http://www.ietf.org/internet-drafts/draft-ietf-manet-

dsr-10.txt.

[5] Ad Hoc On Demand Distance Vector (AODV) Routing (RFC 3561)

[6] Jim Wilson JW Hedgehog, Inc. MSDN - Developing Smart Device WiFi
Applications with the .NET Compact Framework.
http://msdn.microsoft.com/mobility/samples/default.aspx?pull=/library/en-
us/dnnetcomp/html/multicommframework.asp, September 2004.

[7] Papers from Proceedings of The third ACM International Symposium on Mobile
Ad Hoc Networking and Computing, Lausanne Switzerland.

[8] Papers from Proceeding of the fourth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, Annapolis Maryland USA.

[9] Padmini Misra, misra@cse.ohio-state.edu . Routing Protocols for Ad Hoc
Mobile Wireless Networks. http://www.cse.ohio-state.edu/~jain/cis788-
99/ftp/adhoc_routing/index.html#CBRP, September 2004.

[10] C.K TOH. Wireless ATM and Ad Hoc Networks. Protocols and Architecture.

http://www.wirelessnewsfactor.com/perl/story/17975.html
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt
http://www.ietf.org/rfc/rfc3561.txt
http://www.jwhedgehog.com/
http://msdn.microsoft.com/mobility/samples/default.aspx?pull=/library/en-us/dnnetcomp/html/multicommframework.asp
http://msdn.microsoft.com/mobility/samples/default.aspx?pull=/library/en-us/dnnetcomp/html/multicommframework.asp
mailto:misra@cse.ohio-state.edu

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr Peter Denning
Department of Computer Sciences
Naval Postgraduate School
Monterey, California

4. Professor Alex Bordetsky
Department of Information Sciences
Naval Postgraduate School
Monterey, California

5. Professor Gurminder Singh
Department of Computer Science
Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. BACKGROUND
	B. OBJECTIVE
	BENEFITS
	D. THESIS ORGANIZATION

	II. AD HOC NETWORK
	A. INTRODUCTION
	B. PRNET (PACKET RADIO NETWORKS – ORIGIN OF AD HOC NETWORKS)
	C. AD HOC NETWORK CHALLENGES
	1. Spectrum Allocation
	2. Media Access
	3. Routing
	4. Energy Efficiency
	5. Security and Privacy
	6. Congestion Control Mechanism

	III. MEDIA ACCESS CONTROL
	A. INTRODUCTION
	B. HIDDEN TERMINAL PROBLEM
	C. EXPOSED NODE PROBLEM
	D. CSMA-CD
	E. CSMA-CD-BI
	F. PAMAS
	G. DBTMA
	H. MARCH
	I. IEEE 802.11 STANDARD

	IV. AD HOC ROUTING PROTOCOLS
	A OVERVIEW
	B TABLE DRIVEN APPROACHES
	1. Destination Sequenced Distance Vector (DSDV)
	2. Wireless Routing Protocol (WRP)
	3. Cluster Switch Gateway Routing (CSGR)

	C. SOURCE INITIATED ON DEMAND APPROACHES
	1. Ad Hoc On Demand Distance Vector Routing (AODV)
	2. Dynamic Source Routing (DSR)
	3. Temporally Ordered Routing Algorithm (TORA)
	4. Signal Stability Routing (SSR)
	5. Location Aided Routing (LAR)
	6. Power Aware Routing (PAR)
	7. Zone Routing Protocol (ZRP)

	V. AD HOC NETWORK PERFORMANCE REQUIREMENTS
	A. INTRODUCTION
	B. SIGNIFICANT PERFORMANCE PARAMETERS
	1. Route Discovery Time
	2. End to End Delay (EED) Performance
	3. Communication Throughput
	4. Packet Loss Performance
	5. Route Reconfiguration

	VI. TOOLKIT DEVELOPMENT METHODOLOGY
	A. INTRODUCTION
	B. ARCHITECTURE
	1. Node Discovery Process
	2. Agent Module
	Toolkit Functionality
	Event Handling
	Multithreading

	VII. CONCLUSION
	A. CONCLUSION
	B. FOLLOW ON WORK

	APPENDIX. SOURCE CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

